Volume 29, Issue 4 (July 2006)

    A Large Permeameter for Study of Internal Stability in Cohesionless Soils

    (Received 4 November 2005; accepted 24 February 2006)

    Published Online: 2006

    CODEN: GTJOAD

      Format Pages Price  
    PDF Version 7 $25   ADD TO CART


    Abstract

    Results are reported from the commissioning of a large rigid-walled permeameter that was designed to examine hydromechanical conditions prevailing at the onset of seepage-induced failure in soils with a potential for internal instability. A technique of slurry mixing and discrete deposition is used to reconstitute a homogeneous, saturated test specimen. The test specimen is consolidated and then subject to seepage flow, under head-control, in either a downward or upward direction. Two arrays of pressure transducers, located on opposite sides of the specimen, establish the variation of hydraulic gradient along the specimen. The device is configured with a top and bottom load cell, and frictionless loading ram, in order to assess the influence of side-wall friction and thereby establish the distribution of vertical effective stress along the length of the specimen. Observations of hydraulic gradient and effective stress enable a characterization of the onset of instability, which is localized within the specimen. Results of multi-stage tests on glass beads are reported that illustrate novel features of the permeameter and instrumentation, the utility of the specimen reconstitution technique and a novel approach for quantifying the onset of internal instability.


    Author Information:

    Moffat, RA
    Assistant Professor, University of Chile, Santiago,

    Fannin, RJ
    Professor, University of British Columbia, Vancouver, B.C.


    Stock #: GTJ100021

    ISSN: 0149-6115

    DOI: 10.1520/GTJ100021

    ASTM International is a member of CrossRef.

    Author
    Title A Large Permeameter for Study of Internal Stability in Cohesionless Soils
    Symposium , 0000-00-00
    Committee D18