Volume 2, Issue 1

    Influence of Aggregate Source and Warm-Mix Technologies on the Mechanical Properties of Asphalt Mixtures

    (Received 15 March 2013; accepted 22 July 2013)

    Published Online: 2013

    CODEN: ACEMOAD

      Format Pages Price  
    PDF 18 $25   ADD TO CART


    Abstract

    This study evaluated the impact of three aggregate sources (limestone, quartzite, and natural gravel) and three different WMA processes (Advera, Evotherm, and plant foaming) on the properties of asphalt mixtures. The aggregate source and warm-mix process were found to have an impact on the mixing and compaction temperatures of the WMA. The performance of the WMA mixtures was evaluated in terms of moisture damage, rutting, thermal cracking, and fatigue cracking resistance. Based on the results of the analysis of variance (ANOVA) of the data, the aggregate source, WMA technology type, and the interaction between the two were shown to have moderate to significant effects on the performance of the asphalt mixtures for certain tests, whereas having no effect for other tests. Statistical differences were found when comparing indirect tensile strength and tensile strength ratio values, flow number, asphalt pavement analyzer rut depth, and fatigue cracking test results for the various mixtures. None of the WMA mixtures performed, as well as the HMA, except in the beam fatigue test. This was mainly related to the difference between the HMA and WMA short-term aging procedures. However, WMA mixtures exhibited similar or higher moisture damage, rutting, and fatigue cracking resistance than the HMA mixtures produced at the WMA temperatures or with 2-h short-term conditioning, instead of the recommended 4 h by Superpave. Dynamic modulus results showed that, on average, WMA mixtures had significantly lower dynamic modulus values than the HMA mixtures, but similar values to HMA mixtures produced at the WMA temperature and short-term conditioning. The thermal stress restrained specimen test (TSRST) showed that the reduction of production temperatures and short-term aging lowered the fracture temperature, whereas it did not impact the fracture stress. The impact of WMA technology on thermal cracking and fatigue characteristics depended on the type of aggregate.


    Author Information:

    Ahmed, Taha A.
    Ph.D. Candidate, The Univ. of Iowa, Dept. of Civil and Environmental Engineering, Iowa City, IA

    Hajj, Elie Y.
    Assistant Professor, Dept. of Civil and Environmental Engineering, Western Regional Superpave Center, Univ. of Nevada, Reno, Reno, NV

    Sebaaly, Peter E.
    Professor/Director, Dept. of Civil and Environmental Engineering, Western Regional Superpave Center, Univ. of Nevada, Reno, Reno, NV

    Majerus, Nate
    WRSC Laboratory Manger, Dept. of Civil and Environmental Engineering, Western Regional Superpave Center, Univ. of Nevada, Reno, Reno, NV


    Stock #: ACEM20130072

    ISSN: 2165-3984

    DOI: 10.1520/ACEM20130072

    ASTM International is a member of CrossRef.

    Author
    Title Influence of Aggregate Source and Warm-Mix Technologies on the Mechanical Properties of Asphalt Mixtures
    Symposium , 0000-00-00
    Committee D04